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Abstract—The method for statistical modeling of the kinetics of unimolecular decomposition of polyatomic
molecules based on the construction of nonequilibrium functions of the distribution over the energies of the
vibrational excitation of molecules is developed. The rate constants for the two-channel decomposition of a
model molecul e depending on temperature and pressure are reported. The relaxation characteristics for the dis-

sociation of the model molecule are determined.

INTRODUCTION

The methods of statistical modeling, also called
Monte Carlo (MC) methods, are an efficient tool for
solving problems of molecular kinetics [1]. Thus, the
MC method was used to model the processes occurring
during heating the molecular gas with a constant laser
beam and exponentially damping laser pulses[2-4]. To
describe energy exchange during collisions, the expo-
nential model was used. Other examples of the MC
simulations of chemical reactionsisdescribedin[5, 6],
where on the basis of the method proposed by Berd [7],
simple bimolecular (A + B — C + D) [5] and revers-
ible unimolecular (AB + M = A + B + M) [6] reac-
tionswere modeled. It was assumed that energy required
for overcoming the potential barrier is supplied by colli-
sions, and the internal energy was neglected.

Vlasov et al. [8, 9] proposed the method for describ-
ing emission properties of metallic clusters (emission
of atoms, electrons, and light) formed during condensa-
tion of supersaturated metal vapors behind the shock
waves. When maodeling the kinetics of emission proper-
ties, the ideas of the statistical theory of unimolecular
reactions were used. Using the MC method, the func-
tions of cluster distribution over internal energy were
calculated for the processes of energy exchange during
cluster collisions with the atoms of diluent gas and due
to energy loss in emission processes. The processes of
energy exchange between clusters with medium spe-
cies were described using the step-ladder model.

MC simulations of energy exchange processes dur-
ing collisionsin the framework of the statistical theory
of unimolecular reactions were further developed in
[10]. In that paper, we developed the mathematical
model describing the process of energy exchange in
collisions within the framework of the model of activa-

T Deceased.

tion viathe formation of the statistical collisional com-
plex. According to this model, the overall energy of the
complex is statistically distributed during collision and
redistributed during complex decomposition between
the internal energy of the molecule and the kinetic
energy of species. The function of cluster distribution
over internal energy was calculated using the MC
method that imitated random changes in the energies of
molecules during collisions with medium species. We
also simulated the kinetics of the relaxation of the func-
tion of distribution over energy during jumpwise
changes in the temperature of a diluent gas and deter-
mined the characteristics of energy exchange during
collisions (the average energy and the average square of
energy transferred during collisions) depending on the
compl ete energy of the molecule.

In thiswork, we attempt to devel op the method pro-
posed in [10] to describe the transformations of the
function of distribution over energy during unimolecu-
lar decomposition of polyatomic molecules.

Problem Satement

According to the statistical theory of unimolecular
reactions, the apparent rate constant of the unimolecu-
lar decomposition of a polyatomic molecule is deter-
mined by the expression

ko(T) = Zkixiv

wherex isthe population of theith quantum state above
the dissociation threshold E; normalized to unity; k; is
the rate constant of the spontaneous decomposition of
the molecule at an ith state [11]. When the excitation
energy is close to E,, the distances between the levels
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aresmall and the summation can bereplaced by aninte-
gral

[

ko(T) = J’k(E)F(E)dE, M

where k(E) isthe specific rate constant of the decompo-
sition of molecules at the state with energy E, where
F(E) = X(E)p(E) is the function of distribution over
energy for reacting moleculesand p(E) isthe density of
energy states of a molecule. We believe that all energy
states of the molecule are equivalent. In this work, we
assume for simplicity that only vibrational degrees of
freedom participate in the decomposition reaction,
whereas rotational degrees of freedom should be taken
into account only when calculating energy exchange
with medium species.

Thus, to calculate the rate constants of unimolecular
reactions, it is necessary to have the functions p(E) and
k(E) and find the method for estimating the populations
of the energy states x(E) or the function of distribution
over energy for the reacting molecule. Let us consider
a chloroform molecule as a model to illustrate the
method for obtaining the above functions for the
decomposition reaction.

The dissociation of chloroform may occur via two
channels [12-15]:

CHCI, —~ CCl, + HCl, )
CHCI; —~ CHCI; + Cl. (ID)

This fact allows us to demonstrate the capabilities of
the MC method in studying the two-channel process of
dissociation, which is difficult to describe using other
methods. To solve the problem, it is necessary to deter-
mine the density of energy states p(E) for the model
molecule and the rate constantsk; (E) and k,(E) of spon-
taneous decomposition viathe channels of the reaction.

CALCULATION PROCEDURE

Calculation of Vibrational States
of Polyatomic Molecules

The expression for the number of vibrational states
of the molecule W(E) in the interval of energies [0, E]
takes simplest form in the classical approximation:

En

- ,
nllAaw
[

where n is the number of the vibrational modes of the
molecule and w, is the frequency of vibrations. It is
harder to derive formulas that are convenient for calcu-
lations (specifically, integration) and that take into
account the quantum nature of the distribution of the
vibrational energetic states of molecules. The Witten—

W(E) =
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Rabinovitch interpolation formula [16] is used most
widely and approximates the step function

1CE +a(E/E,)E-
nt 0 Ao O

where E, is the sum of zero-point vibration energy of
molecules, a(E/E,) is the combination of molecular
parameters and the universal empirical function depen-
dent on energy. However, without additional simplify-
ing assumptions (e.g., a(E/E,) = const), this expression
isinconvenient for integration.

In this work, we had the goal of determining the
number and density of the vibrational states of mole-
cules by the numerical integration of the step function
WE) for a specific molecule and further approximating
it with asimple function.

The CHCI; molecule has the following set of frequen-
cies 3033, 1205 (2), 760 (2), 667, 364, 260 (2) cm! [17].
In calculation, we divided the energy interval to the
maximum possible N equal portions. In our example,
E...x = 500 kJmol, N = 5000. The number of statesin
the energy interval fromOto E; (i=1, ..., N) for one
random vibrational mode of the moleculeis

W,(E)) = 1+trunc(Ej/e;), E =10, i =1...N,

where d = E,,,,/N = 0.1 kImol; €, is the energy of the
vibrational quantum of the chosen vibrational mode;
the value of the trunc(x) function is the integer part of
the real number x. The addition of statesrelated to other
vibrational modes was carried out using the recurrent
relation

W(E) =

W (E) = z W _4(E,), ()
i=o

where W (E)) is the number of states for L vibrational
modes in the interval of energies from 0 to E, | =
trunc(id/g, ), J = trunc(i — j_/d); and €, isthe energy of
the vibrational quantum of the Lth vibrational mode.
For the convenience of further use, the step function
was approximated by a smooth function of the form

S
w(E) =+ 5. 3
where E, and s are the parameters of approximation.
However, s can be considered as an effective statistical
weight of thevibrational states of agiven molecule. For
the given molecule, we obtained E, = 25.9 kJ/mol and
s=8.157. For the sake of comparison, we note that the
number of vibrational modes of the CHCl; moleculeis
equal to 9, and the sum of zero-point vibrations is

%z fiw, =48.4kJmol. Thetable showsthe calculated

number of states using Egs. (2) and (3), the number of
states cal culated using the grouped frequencies method
[17], and those calculated using the Witten—Rabino-
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vitch formula. The results of grouped-frequencies cal-
culations coincide with those obtained using Eq. (2).
The Witten—Rabinovitch formulagives close resultsfor
the number of states. The approximation using Eq. (3)
only dlightly alter the resullts.

The expression for the density of states p(E) can
easily be abtained by differentiating Eq. (3):
s—1
SO . EQ _

p(E) = =

= E0 “)

Rate Constants of Spontaneous Decomposition

In the framework of the statistical theory of unimo-
lecular reactions, the rate constant of the spontaneous
decomposition of the molecule is defined by the ratio
[11]

1IW'(E-Ey)

h p(E) °

where WH(E — E,) isthe number of vibrational states of
the activated molecule in the interval from O to E - E,;.
When calculating WHE - E,), we neglected the states
associated with the motion along the reaction coordi-
nate. The question of the structure of the activated mol-
ecule was outside the scope of this work. We restricted
ourselves two considering two limiting cases that cor-
respond to the model of so-called rigid and loosened
activated complexes[11].

The model of arigid complex. If the transition to
the activated state occurs with a slight change of bond
lengths, than the activated and active molecules [11]
have similar vibrational spectra of frequencies. For
example, this is possible when there is a pronounced
potential maximum on some reaction coordinate. The
energy of molecule rotation as wholeisineffective and

K(E) =

Numbers of the vibrationa states of the CHCIl; molecule

can be neglected. To afirst approximation, for the num-
ber of states of the activated molecule, we write

E—- Ed]s_l

W'(E-E,) OHL + —1

Then, for the rate constant of spontaneous decomposi-
tion we obtain

s—1

E
K(E) = nsv%L—E+dEE , Q)

where n, is the number of equivalent reaction channels
and v is the vibration frequency of the activated mole-
cule.

In further developments below, we assume that
reaction (I) occursviathe formation of arigid activated
state. The rate constant of this reaction was measured
by several authors [12-14]. According to [14], at high
pressures, the dependence of the rate constant of this
reaction on temperature takes the following form:

kg 1(T) = 1.82 x 10" exp(—228/RT)

with the activation energy in kJmol. If the expression
for kg (T), obtained using the integration according to
formula (1) at the equilibrium distribution function and
the rate constant of spontaneous dissociation having the
form (5), is compared with the experimental depen-
dence, wefind that inthiscaseny =1.82 x 10'*s™. The
barrier to reaction (1) isEy ; = 228 kImol.

The model of loosened complex. If the activated
molecule is close in its structure to the reaction prod-
ucts, than the model of loosened complex can be used.
The frequencies of vibrations and the number of vibra-
tional degrees of freedom of the complex are assumed
to be the same as for nonreacting molecul es (products).
In the simple case when one atom is abstracted from a

W(E)
E, kJ/mol calculation using calculation using calculation with calculation using
formula (2) formula (3) frequency grouping [17] |the Witten—Rabinovitch formula
4.2 3 34 4 2.40
8.4 10 9.9 10 9.67
12.6 34 26 32 289
16.8 70 59 67 71
251 320 258 331 316
335 1054 895 1086 1072
41.9 2998 2632 3151 3045
83.8 1.33x10° 1.35 x 10° 1.34 x 10° 1.35x 10°
125.7 1.77 x 106 1.90 x 106 1.77 x 106 1.79 x 106
167.6 1.29 x 10/ 1.40 x 107 1.30 x 107 1.31 x 107
251.4 2.55 x 108 2.65 % 108 2.56 x 108 2.58 x 108
KINETICS AND CATALYSIS Vol. 42 No.4 2001
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polyatomic molecules, the expression for the rate con-
stant of the spontaneous decomposition takes the form

%l+ E—EODs+

K(E) = ny———"—, (6)

where the plus symbol marks the parameters that refer
to amolecule or aradical that is the product of decom-
position.

Let us assume that reaction (I1) occurs via the for-
mation of loosened activated state. There are no exper-
imental data on the rate constant of reaction (11). Only
the fact that this reaction can occur as a step of multi-
ple-step process is known [15]. To calculate the for-
mula for the rate constant of spontaneous decomposi-
tion, it is necessary to determine the values of E; ,, ng,

v, E; and s". The activation barrier of the reaction was

set equal to the energy of the C—Cl bond, which is
239 kIJmol. For the chloroform molecule, there are
three equivaent ways to abstract the chlorine atom;
therefore, ny = 3. For the frequency, we adopted the

valuev =1 x 1013 5!, To determinethevalues of E, and
s", we calculated the vibrational states of the CHCI,

radical using formulas (2) and (3): E, = 17.3 kJ/mol
and s =5.45,

Procedure for Calculating Nonequilibrium
Functions of Distribution over Energies

A detailed description of the method for construct-
ing the equilibrium functions of distribution over ener-
gieswasgivenin [10]. Themethod isbased on the play-
off of arandom changein theinternal energy of amol-
eculeduring itscollisions. The essence of the method is
asfollows. The moleculeis considered with acomplete
internal energy E, consisting of vibrational and rota-
tional components: E, = E,  + E . It is assumed that
the medium consists of atomic gas and that the energy
of trandational motion is thermolyzed (i.e., corre-
sponds to the equilibrium value).

The energy of collision E, was found by the play-off
of a random number and finding the corresponding
value of energy. Then, we determined the distribution
of full energy of the collisional complex E, + E, over
the kinetic energy of colliding partners moving away
and theinternal energy of molecules after collision. The
latter consists of the vibrational and rotational compo-
nents. It was assumed that the probability of each pos-
sible energy distribution is proportiona to the density
of energy states corresponding to this distribution. The
distribution of energies between the vibrational degrees
of freedom and other kinds of motion was aso deter-
mined by the play-off of arandom number. Finally, one
more play-off of a random number was used to deter-
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mine the distribution of energy between vibrational and
tranglational degrees of freedom. As a result we deter-
mined new values of the vibrational energy E, ,, rota-
tional energy E, |, and full internal energy E, ; acquired
by a molecule in collision. The function of molecule
distribution over full, vibrational, and rotational ener-
gies was obtained as a result of multiple repetitions of
this procedure and fixing each successively determined
energy state of the molecule.

The above procedure allowed us to obtain the equi-
librium distribution of a molecule over the energies of
vibrational and rotational states of a molecule. Chemi-
cal reactions disturb the equilibrium distribution. Let us
discuss how the MC procedure makes it possible to
obtain nonequilibrium distribution functions and deter-
mine the reaction rate constants.

At the first stage, the N ~ 10° molecules were dis-
tributed according to an arbitrary initial distribution
function over energies. The molecules were placed in
the cellshaving sizes of RT/10 in therange of full ener-
gies of molecules (4-5)sRT. Thisrange is sufficient for
describing the dissociation kinetics of a given mole-
cule. In the calculation, we showed that all molecules
collide at the same time after equal intervals between
collisions. This simplification somewhat distorts the
distribution function over energies, but this distortion
can be taken into account as described bel ow.

Let usrefer to the collision of amolecule with aspe-
cies of surrounding gas or the decomposition of amol-
ecule via one of the channels as an event, and let us
define a cycle as a procedure consisting of a play-off of
events for each of N molecules. As aresult of calcula-
tions for one cycle, a new distribution function over
energies appears for unreacted molecules, and this new
function is used as a further approximation to the final
quasistationary distribution function over energies.

A play-off for each molecule was carried out asfol-
lows. We determined the vibrational and rotational
components of the full energy by solving the equation

E,

I%L + Eizgs_l./Eo—sds
E=2 ,
[+ Eizgs‘lmds
0

where E, and E, are the full and vibrational energies of
amolecule and € is arandom number. When the vibra-
tiona energy of a molecule was below the barrier of a
reaction, we assumed that the state of molecules did not
change between collisions, carried out a new play-off
and determined a new energy state of amolecule. If the
value E, was higher than the reaction barrier, we deter-
mined which of the attempts occurred between collisions.
For that, we caculated the rate congtants of spontaneous
decompostion k,(E,) according to formula (5) and k,(E,)
according to formula (6) and the frequency of collisons

(N
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Fig. 1. Functions of distribution over vibrational energy at 2250 K and pressures of (1) 103, (2) 1,and (3) 1073 atm. Curve 2' corre-
sponds to the distribution of reacted molecules at 1 atm. The insert on the top shows the increased fragment of the spectrum at

E ~300 kJ/mol.

according to theformulaZz=2.7 x 10"'PT-"? s! (P isthe
gas pressure). Then, the random number &, was played
off. If & < X, = K(E)/[K/(E,) + K(E,) + Z], then we
considered that the reaction occurs through channel (1).
In this case, the counter for the number of acts through
channel (1) incremented the previous value AN;. If X, <
&1 <X = [K(E) + K(E)V/IK (E) + ky(E)) + Z], thenwe
considered that reaction occurs through channel (1)
and counter (I1) incremented the value AN,. At &, > X,,
collision was played off and a new energy state of the
mol ecule was established.

After each cycle, the function of distribution over
energies was normalized so as to compensate for a
decrease in the number of molecules due to the reac-
tion. The genera number of molecules in each next
cycle was always equal to N. The apparent rate con-
stants of reactions were determined by the formula
ky i(T)=ZAN,/N (i = 1, 2). The quasistationary function
of distribution over energies was formed by multiple
repetitions (25-50 times) of the cycle. A criterion for
the achievement of the stationary state was the achieve-
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ment of constant values with the accuracy of the kg ; (T)
values.

Note that the described procedure for constructing
nonequilibrium functions of distribution over energies
and determining the rate constants of the two-channel
unimolecular reaction can also be applied to a simpler
case of the one-channel decomposition of polyatomic
molecules.

RESULTS OF CALCULATION

Figure 1 shows the functions of distribution over
vibrational energy at 2250 K and different frequencies
of molecule collisions with the species of medium
obtained by the method described above. The functions
shown in this figure are normalized to unity. Curve /
corresponds to the case when the frequency of decom-
position actsis negligible compared to the frequency of
collisions (the high-pressurelimit). In thiscase, thedis-
tribution function coincides with the equilibrium func-
tion. Curve 2 isthe distribution function at apressure of
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Fig. 2. Pressure dependences of calculated rate constants
(kg, ;) of reactions (1) (curve 1) and (I1) (curve 2), reaction

(I1) assuming that reaction (I) does not occur (curve 3).
Lines1, 2, 3 and 1", 2", 3" correspond to the dependences

of kg,i M] and kg ; , where kg,i and ky ; arethe rate con-
stants in the low- and high-pressure limits, respectively.

logky ; (T) [s7]
10 -

L L
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1/T x 103, K !

Fig. 3. Temperature dependences of calculated rate con-
stants (ky, i) of (1, 2, 3) reaction (I) and (1, 2, 3') reaction

(I at (1,1') 103, (2, 2) 1, and (3, 3) 10° atm.

1 atm. Inthis case, only some portion of molecules that
overcome the barrier react (thisisatransition region of
pressures). Curve 2' shows the distribution of reacted
molecules. Curve 3 corresponds to the case when each
molecule that overcame the barrier dissociates via one
of the reaction channels (the low-pressure limit).
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Note that due to the simplifying assumption men-
tioned above (all molecules collide at the same time at
equal intervals), the functions of distribution over ener-
gies shown in Fig. 1 differ from actual function in that
they describe the molecules immediately after colli-
sion. The actual function of distribution over energies
at any moment of time accounts for molecules that
existed at this energy state for different periods, and
some of them dissociated after overcoming the reaction
barrier. This is reflected in the depletion of the actual
function of distribution over energies. Therefore, for-
mula (1) isinapplicable to calculating the apparent rate
constants of using the calculated function of distribu-
tion over energies shown in Fig. 1, and correction is
necessary. It iseasy to show that in this case one should
use

S ki(e)
W= 2[R re 2" @

Ed,i
(i=172).

instead of EQ. (1). This formula coincides with Eqg. (1)
at the high-pressure limit.

Note the shift in the function of distribution over
energies toward lower energies with a decrease in the
frequency of collisions, which can be interpreted as a
decrease in the apparent temperature of reacting mole-
cules with a decrease in the intensity of their energy
exchange with thermolyzed species of the medium.
Note that the energetically nonequilibrium condition
that appearsin the course of chemical reactionsis often
taken into account in practice by using the approxima-
tion that makes use of apparent temperature idea. The
results obtained illustrate well that such an approxima-
tionisjustified.

Figure 2 shows the plots of calculated apparent rate
constantsvs. pressure for channels (1) (curve 1) and (I1)
(curve2) at 2250 K. Slanting lines 1" and 2' describe the

respective dependences of kJ ; [M], where kq ; are the
rate constants in the low-pressure limit with the dimen-
sionality of second-order rate constantans and [M] is
the diluent concentration. The horizontal lines describe
the values of the rate constants of channels (1) and (I1)

in the high-pressure limit kg ; .

Let us estimate the mutual effect of channels on
each other. Because reaction (I1) is much slower than
reaction (1), its effect on reaction (1) isweak. The effect
of reaction (I) on the rate of reaction (I1) is rather
strong. Curve 3 in Fig. 2 shows the dependence of the
rate constant of reaction (I1) on pressure calculated
assuming that reaction (I) does not occur. It can be seen
that the effect of reaction (I) on channel (I1) becomes
stronger as the pressure decreases. In the high-pressure
limit, the mutual effect of reactions is absent because
chemical reactions do not affect the equilibrium func-
tion of distribution over energiesin this case.

KINETICS AND CATALYSIS Vol. 42 No. 4 2001
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Figure 3 shows the temperature dependences of the
calculated apparent rate constants at different pres-
sures. Note that the dependences at 0.001 atm virtually

coincide with the dependences for kgyi (M[M], and
those at 1000 atm coincide with the dependences for

kai (1.

Let us consider the characteristic time for the relax-
ation of the function of distribution over energies (and
the respective reaction rates) at drastic changed in the
conditions. This is called the incubation period. This
situation is characteristic of shock tubes when, after
passing the front of a shock wave, the temperature and
pressure of gas increase in a jumpwise fashion. When
modeling the relaxation kinetics of the distribution
function over energies to new thermodynamic condi-
tions, the zero approximation was the distribution func-
tion at an initial gas temperature equal to 300 K. Then,
using the method described above, we calculated the
transformations of the distribution function in a series
of cycles assuming that the temperature of the diluent
gasis equal to the final preset temperature. After each
cycle the new state of the distribution function was
determined and the apparent rate constants for both
channels of the model reaction were determined. Fig-
ure 4 shows changes in the apparent rate constants k; ,
and k; , divided by their final quasistationary values at
2250 K and 1 atm depending on the number of played-
off callisions. It is seen that both constants change
according to the same law and the quasistationary state
is achieved for 20-30 cycles.

The characteristic relaxation time 1 can be deter-
mined astime required for achieving the quasi stationary
values of apparent rate constants as shownin Fig. 4. Fig-
ures 5 and 6 show changesin the characteristic relaxation
time expressed in the number of collisions as functions
of pressure at 2000 K and temperature at 10-> atm. Note
that changes in the number of collisions necessary for
achieving the quasistationary value of the rate constant
are small. Thus, when the temperature increases from
1400 to 2750 K, the number of collisions decreases
~1.5 times. When the pressure increases by a factor of
10, the number of collisions increases by 15-20%. It
can be assumed that the relaxation of the distribution
function requires approximately 20-25 collisions. Nev-
ertheless, more collisions are required for the relax-
ation when the conditions are closer to the high-pres-
sure limit. This can be explained by the fact that, in the
high-pressure limit, the distribution function should be
restored up to the very high values of energy excitation
in the course of relaxation. In the low-pressure limit,
the reaction does not exist behind the barrier and relax-
ation requires fewer collisions.

As can be seen, the Monte Carlo method makes it
possible o abtain the complete spectrum of necessary
data on the rate constants over a wide range of temper-
atures and pressures without using substantial simplify-
ing assumptions. Specifically, the method helps to

KINETICS AND CATALYSIS Vol. 42 No. 4 2001
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Fig. 4. Relaxation to the quasistationary values of the rate
constants of the decomposition via (1) channel (1) and
(2) channel (I1). T isthe relaxation time.
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(in numbers of collisions) of the function of distribution
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Fig. 6. Dependence of the characteristic time of relaxation
(in numbers of collisions) of the function of distribution
over energies on temperature at 10~ atm.
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solve the problem on the nonstationary behavior of the
distribution function at a jumpwise change in the con-
ditions of the reaction. This problem is hard to solve
using other methods. The method proposed in thiswork
isauseful supplement to the set of tools for describing
the kinetics of unimolecular reactions. We plan to
develop it further for the description of other kinetic
processes, specifically reversibleisomerization and dis-
sociation reactions, as well as reactions influenced by
external sources of energy, and others.
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